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Differential cross section of yn — K1Y~ on bound neutrons with incident photons from
1.1 to 3.6 GeV
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Differential cross sections of the reaction yd — KX (p) have been measured with the CLAS
detector at Jefferson Lab using incident photons with energies between 1.1 and 3.6 GeV. This is
the first complete set of strangeness photoproduction data on the neutron covering a broad angular
range. At energies close to threshold and up to E, ~ 1.8 GeV, the shape of the angular distribution
is suggestive of the presence of s-channel production mechanisms. For E, > 1.8 GeV, a clear forward
peak appears and becomes more prominent as the photon energy increases, suggesting contributions
from t-channel production mechanisms. These data can be used to constrain future analysis of this

reaction.

PACS numbers: 25.20.Lj, 13.30.-a, 13.60.Le, 14.20.Gk, 14.40.Aq

A major goal of hadron physics is to study the struc-
ture of the nucleon and its excited states. However,
understanding nucleon resonance excitation is a serious
challenge due to the non-perturbative nature of QCD at
low energies. This makes the situation for the excited
states of the nucleon (N and A resonances) still unclear:
many more states are predicted than observed and states
with certain quantum numbers appear at energies much
lower than predicted. This has been known for a long
time as the “missing resonance” problem [1]. In quark
models (see Ref. [2] for reviews), the number of excited
states is determined by the effective degrees of freedom,
while their ordering and decay properties are related to
the residual quark-quark interaction.

The effective degrees of freedom in standard non-
relativistic quark models are three equivalent valence
quarks with one-gluon exchange interactions. A different
class of models uses interactions that give rise to a quark-
diquark clustering of the baryon [3]. If there is a tightly
bound diquark, only two degrees of freedom are available
at low energies; thus, fewer states are predicted. Fur-
thermore, selection rules in the decay pattern may arise
from the quantum numbers of a diquark. More states
are provided by collective models of the baryon, like the
algebraic approach [4], or in the framework of flux-tube
models |5], which are motivated by lattice QCD. So far,
however, the experimentally observed number of states is
still far lower than predicted by the quark-diquark mod-
els.

Experimentally, most of our present knowledge of
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baryon resonances comes from reactions involving pions
in the initial and/or final states. For increasing masses,
both the energy overlap of the resonances and meson pro-
duction make it more difficult to separate the resonance
contributions. A possible explanation for the missing re-
sonance problem could be that pionic coupling to the
intermediate N* or A* states is weak and that many
of the missing states only become visible in other reac-
tion channels. Photoproduction of non-strange resonan-
ces detected via decay into strange particles offers two
benefits: (1) two-body KY (where Y denotes any hy-
peron) final states are easier to analyze than the three-
body m7w N final states that dominate the decays at higher
masses resonances; (2) couplings of nucleon resonances
to KY final states are expected to differ from those to
7N and 7N final states [6]. Therefore, looking in the
strangeness sector casts a different light on the resonance
excitation spectrum, and thus, may emphasize resonan-
ces not revealed in 7N scattering. To date, however, the
PDG compilation [7] gives poorly known KA couplings
for only five well-established resonances, and no K'Y cou-
plings for any resonances. Mapping out the spectrum of
excited states that decay into K'Y particles is therefore
crucial to provide a deeper insight into the underlying
degrees of freedom of the nucleon and to discriminate
among different models.

The search for missing resonances requires more than
the study of the hadronic mass spectrum. In fact, QCD
cannot be directly tested against experimental N* mass
spectra without a model for the production dynamics [g].
Thus, in addition to the s-channel contributions, impor-
tant in the resonance region in order to reproduce the
invariant mass spectra, the t- and u-channel meson and
baryon exchanges are also necessary in the theoretical
description. The former are needed in order to describe
the diffractive part of the production, and u-channel di-
agrams are necessary to describe the back-angle produc-
tion. Thus, measurements that can constrain the phe-
nomenology for these reactions are just as important as
finding one or more of the missing resonances.

A large amount of cross-section data of hyperon pho-
toproduction on the proton has been published in re-
cent years by the SAPHIR [9], CB-ELSA/TAPS |10, 11],



CLAS [12,[13] and LEPS [14] collaborations from thresh-
old up to E, ~ 3.8 GeV over a wide angular range. The
polarization of the recoil hyperon has also been mea-
sured by CLAS |13, [15], SAPHIR [9] and GRAAL [16],
while photon beam asymmetries have been measured by
LEPS [17]. Despite this large body of data, theoretical
ambiguities still exist. In fact, theorists have found con-
flicting evidence for resonances using isobar models |18],
coupled-channel [19+21] and partial wave analysis |22]
approaches.

In this situation the necessity of more data and from
different channels is evident. In particular, for Y-
photoproduction on the neutron, one can take full ad-
vantage of the isospin symmetry, adding significant con-
straints on the YK NY coupling constants [23]. Unfortu-
nately, data of hyperon photoproduction on neutrons are
very scarce, with the only available data from LEPS [24],
covering a limited photon energy range at very forward
kaon angles.

In this paper high-precision cross sections of the re-
action yd — KTX7(p) in a broad kinematic range
are presented. The data were acquired using the
CLAS detector [25] housed in Hall B at Jefferson Lab.
A bremsstrahlung photon beam produced by a 3.776
GeV continuous electron beam hitting a 10~* radiation-
lengths gold foil was used [26]. Tagged photons, in the
energy range from 0.8 to 3.6 GeV, were directed onto a
liquid-deuterium target. With an electron beam current
of ~ 25 nA, the photon flux incident on the deuterium
target was ~ 10% v/s.

The primary kaon, and the pion and neutron coming
from the X~ decay (with branching fraction bs,- ~ 100%)
were detected by CLAS. The low-energy spectator pro-
ton was reconstructed using the missing-mass technique.
Fiducial cuts were applied to both real and Monte-Carlo
simulated data in order to exclude regions where the de-
tector acceptance was not well understood and the re-
gions where the drift chambers or scintillator efficiencies
were not well known. Neutral particles are identified in
CLAS as clusters in the electromagnetic calorimeters that
are not associated with any charged track in the drift
chambers. Neutral clusters with 8 > 0.9 are then identi-
fied as photons, while clusters with § < 0.9 are associated
with neutrons.

In order to identify good vd — KT7~nX candidates,
with the missing particle X consistent with a spectator
proton, we first applied a cut on the missing momentum
Px < 0.25 GeV/c. The remaining events, integrated over
all angles, were divided into 100 MeV wide bins in photon
energy. In each bin, the missing-mass distribution was
used to select events consistent with a missing spectator
proton.

The missing-mass distribution for the photon energy
bin of 2.0-2.1 GeV in Fig. [l shows a clear proton peak
and a smaller structure at higher masses. The latter,
that starts to appear at photon energies 2 2 GeV, is due
to photoproduction events of ¥*(1385)~ and K*(892)%.
The ¥*(1385)~ decays into X with b+ ~ 12% and

the K*(892)" decays into Km with bg« ~ 100%. Each
missing-mass distribution was fit with two Gaussian line
shapes plus a polynomial curve. The total fit and each
contribution separately are shown in Fig.[Il Events with
a spectator proton were selected by applying a 3o cut
around the main peak. The background contribution
coming from X*(1385)~ and K*(892)" events was es-
timated to be between 1 and 3% and then subtracted.
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FIG. 1: Missing-mass distribution of the yd — KT7~nX re-
action for photon energy in the bin 2.0-2.1 GeV. The solid
line is the total fit to the distribution. The dot-dashed line
represents the proton distribution, the dashed line is the con-
tribution of the events with an additional 7° as explained in
the text, and the dotted line is the background contribution.
The two vertical lines represent a 3o cut.

After the selection of yd — Ktn~n(p) candidates,
we looked for evidence of the presence of ¥~ particles
in the invariant-mass distribution of the pion and neu-
tron. The distribution obtained for data and MC for the
photon-energy bin 2.0-2.1 GeV is shown in Fig. A
sharp peak consistent with the ¥~ appears on top of a
small, almost flat background. Each distribution was fit
with a Lorentzian peak plus a second-order polynomial
for the background (in Fig. [ only the fit of the data is
shown). The Lorentzian shape has been chosen because
it reproduces the peak shape of both experimental and
MC data better than the Gaussian. The final sample of
vd — K+¥7(p) events was obtained by selecting events
within 3I" around the peak, where I is the full width at
half maximum of the Lorentzian. The background cal-
culated by integrating the polynomial curve within the
cuts was subtracted. The total background is generally
increasing with the photon energy, and is between 2%
and 25%.

Finally, the extracted yield was corrected for the CLAS
detector acceptance. For this, vd — KTX"p events
were generated according to the Quark-Gluon Strings
Model [27, 128]. The Fermi motion of the neutron bound
in the deuterium nucleus was described by the momen-
tum distribution calculated from the Paris potential |29].
The generated events were processed through a GEANT-
based Monte Carlo simulation of the CLAS detector, in-
corporating all of the known subsystem efficiencies and
resolutions. The simulated data were analyzed by the
same software used in the real data processing and anal-
ysis. The CLAS acceptance was computed as the ratio
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FIG. 2: (color online) The nm~ invariant mass distribution
for data (full histogram) and MC (dashed histogram) in the
photon energy range 2.0-2.1 GeV. The solid line is the fit
of the distribution with a Lorentzian peak plus a polynomial
background (the latter represented by the dotted line). The
two vertical lines show the 31" cut applied to the data sample
in order to select ¥~ events. Only the fit of the data is shown.

between the number of events passing all the analysis cuts
and the number of generated events in each one of the
100-MeV wide photon energy bins and 0.1-wide cos 6™
bins.

The differential cross section for KX~ photoproduc-
tion on the neutron was calculated using the following
relation:

do A N;Zakbzf
dQ  pxNas N,AQ

(1_3)5 (1)

where Ngevak is the number of the vyd — KX~ (p) events
weighted by the acceptance of the CLAS detector, N5 is
the number of incident photons, B is the fraction of back-
ground events, A is the target molecular weight, N is
Avogadro’s number, and p = 0.163 g/cm? and 2 = 24 cm
are the target density and length, respectively. Photon
absorption in the target was also calculated and found to
be negligible. Systematic uncertainties of the final cross
sections contain contributions from the photon flux cal-
culation (4%), target length and density (0.5%), fiducial
cuts (1-3%, depending on the bin), background subtrac-
tion (1-10%), neutron detection efficiency (0.7%) and the
Monte Carlo event generator (1.7%). The total system-
atic uncertainty was obtained by adding in quadrature
each contribution, bin by bin. Thus, the total system-
atic uncertainty in our cross section measurements is es-
timated to be about 4.5-13.5%.

Our final results are shown as full circles in Fig. Bl For
energies up to £, = 2.1 GeV, the results are shown in
linear scale while for higher energies, logarithmic scale
has been chosen in order to make more readable the be-
havior at the backward angles. The error bars represent
the total (statistical plus systematic) uncertainties. This
is the first high-precision determination of ¥~ photopro-
duction on the neutron covering a broad kaon-angle and
photon-energy range. At a photon energy of ~ 1.8 GeV,

a clear forward peak starts to appear and becomes more
prominent as the photon energy increases. This behav-
ior, that is typically attributed to contributions from ¢-
channel mechanisms, is not observed at lower energies,
where the dominant contributions appear to be from s-
channel mechanisms. Above ~2.1 GeV there are indica-
tions of a possible backward peak, which might suggest
the presence of u-channel mechanisms.

The few LEPS data [24] available for energies 1.5-2.4
GeV and at forward angles are shown in Fig. Bl Since
these data have been provided in 50-MeV wide energy
bins, for comparison with our results the weighted ave-
rage of two bins has been computed and reported in the
figure. They are in good agreement with our results
within the total uncertainties.

Also shown in Fig. @] are the theoretical results of a
Regge-based calculation (Regge-3 model) [32]. In this
model, the reaction amplitude incorporates the exchange
of Kt and K*(892)% Regge trajectories. By adding reso-
nance contributions to the Regge amplitudes, the model
is able to describe the A and ¥° photo- and electro-
production data on the proton reasonably well [33-35].
The Regge-based model overestimates our results at for-
ward and intermediate angles by about a factor of two.
At backward angles the calculated cross section is too
small by an order or magnitude, which is a reflection of
the lack of resonances in the model.

In conclusion, CLAS has provided the first precise de-
termination of the vd — KX (p) cross section in a
broad kinematic range where almost no data are availa-
ble. Since Final State Interaction (FSI) can be estimated
to be small (less than 10%) from calculations for the A on
the proton [30, [31], the cross section on the free neutron
are not expected to be significantly different. A compre-
hensive treatment of FSI and the extraction of the neu-
tron cross section will be given in the forthcoming longer
paper. These results will significantly contribute to the
improvement of the phenomenological analysis of meson
photoproduction reactions at medium energies aiming to
solve the missing resonance problem.
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