CLAS Analysis Framework

Model maid data

Author
D. Drechsel, L. Tiator
Description
MAID approach for evaluation of Nπ observables in the resonance region
Channel
π0p
Q2
0.9 GeV²
φ-dependence Channel Q2, GeV² W, GeV cosθ xB H1, GeV−1 H2, GeV−1 H3, GeV−1 H4, GeV−1 H5, GeV−1 H6, GeV−1
π0p 0.9 1.94 0.94 0.238 0.00135+0.00728j -0.0512-0.0137j -0.00244-0.00176j -0.0204+0.0112j 0.0101-0.00341j 0.00393+0.000158j
π0p 0.9 1.94 0.866 0.238 -0.00127+0.00796j -0.04-0.011j -0.0043-0.00308j -0.033+0.0137j 0.00781-0.00231j 0.00512+0.000401j
π0p 0.9 1.94 0.766 0.238 -0.00411+0.00617j -0.0268-0.00875j -0.00593-0.00365j -0.0441+0.0136j 0.00502-0.000982j 0.00558+0.000781j
π0p 0.9 1.94 0.643 0.238 -0.00537+0.00251j -0.0124-0.00758j -0.00757-0.00287j -0.0511+0.0114j 0.00222+0.000387j 0.00526+0.00127j
π0p 0.9 1.94 0.5 0.238 -0.00456-0.00185j 0.00222-0.0078j -0.00943-0.000631j -0.0526+0.00823j -8.6e-05+0.00163j 0.00422+0.00178j
π0p 0.9 1.94 0.342 0.238 -0.00236-0.00557j 0.0161-0.00903j -0.0114+0.00259j -0.0488+0.00532j -0.00153+0.00258j 0.00264+0.00222j
π0p 0.9 1.94 0.174 0.238 1.43e-05-0.00761j 0.028-0.0104j -0.0129+0.00584j -0.0408+0.00365j -0.00199+0.00315j 0.00081+0.00246j
π0p 0.9 1.94 0.0 0.238 0.0016-0.00749j 0.0365-0.011j -0.0132+0.00803j -0.0301+0.00359j -0.00157+0.0033j -0.000853+0.00239j
π0p 0.9 1.94 -0.174 0.238 0.00206-0.00545j 0.0409-0.00987j -0.0121+0.0083j -0.0181+0.00487j -0.00053+0.00307j -0.00193+0.00197j
π0p 0.9 1.94 -0.342 0.238 0.00167-0.00234j 0.041-0.00684j -0.00969+0.0064j -0.00581+0.00666j 0.000759+0.00254j -0.00202+0.00118j
π0p 0.9 1.94 -0.5 0.238 0.00107+0.000774j 0.0375-0.00234j -0.00701+0.00275j 0.00567+0.00795j 0.00198+0.00184j -0.000931+5.73e-05j
π0p 0.9 1.94 -0.643 0.238 0.000802+0.00294j 0.0318+0.00254j -0.00531-0.00158j 0.0152+0.00796j 0.00286+0.00113j 0.00133-0.00129j
π0p 0.9 1.94 -0.766 0.238 0.00096+0.00368j 0.0253+0.00651j -0.0054-0.00529j 0.0214+0.0064j 0.00326+0.000523j 0.0045-0.00271j
π0p 0.9 1.94 -0.866 0.238 0.00117+0.00308j 0.0189+0.00842j -0.00684-0.00722j 0.0232+0.00364j 0.00312+0.000107j 0.00806-0.00405j
π0p 0.9 1.94 -0.94 0.238 0.000953+0.00176j 0.0128+0.00769j -0.00764-0.00674j 0.0206+0.000523j 0.00245-9.31e-05j 0.0114-0.00514j
π0p 0.9 1.94 -0.985 0.238 0.000351+0.000502j 0.00663+0.00456j -0.0054-0.00404j 0.0162-0.00191j 0.00135-0.0001j 0.0137-0.00585j
π0p 0.9 1.94 -1 0.238 0j 0j 0j 0.0139-0.00282j 0j 0.0146-0.0061j
π0p 0.9 1.96 1 0.233 0j -0.0594-0.0165j 0j 0j 0.012-0.00405j 0j
π0p 0.9 1.96 0.985 0.233 0.00178+0.00377j -0.0567-0.0158j -0.000681-0.000423j -0.00939+0.00568j 0.0115-0.00383j 0.00214-1.43e-05j
π0p 0.9 1.96 0.94 0.233 0.00119+0.00635j -0.0492-0.0139j -0.00225-0.00148j -0.0209+0.0101j 0.0102-0.00318j 0.00392+6.45e-05j
π0p 0.9 1.96 0.866 0.233 -0.00158+0.00696j -0.0384-0.0114j -0.0039-0.00257j -0.0338+0.0124j 0.00798-0.00219j 0.00509+0.000294j
π0p 0.9 1.96 0.766 0.233 -0.00449+0.00542j -0.0256-0.00931j -0.00536-0.00302j -0.0451+0.0123j 0.00524-0.000982j 0.00552+0.000695j
π0p 0.9 1.96 0.643 0.233 -0.00566+0.00226j -0.0116-0.00818j -0.00694-0.00229j -0.0521+0.0104j 0.00245+0.000294j 0.00516+0.00123j
π0p 0.9 1.96 0.5 0.233 -0.00469-0.00152j 0.00305-0.00828j -0.00897-0.000315j -0.0536+0.00758j 0.000136+0.00148j 0.00409+0.00178j
π0p 0.9 1.96 0.342 0.233 -0.00236-0.00476j 0.0172-0.00925j -0.0113+0.00249j -0.0498+0.00502j -0.00134+0.00241j 0.00249+0.00224j
π0p 0.9 1.96 0.174 0.233 1.43e-05-0.00654j 0.0295-0.0104j -0.0132+0.00529j -0.042+0.00358j -0.00183+0.00301j 0.000659+0.00248j
π0p 0.9 1.96 0.0 0.233 0.00142-0.00646j 0.0384-0.0107j -0.0139+0.00716j -0.0316+0.00363j -0.00144+0.0032j -0.000996+0.00239j
π0p 0.9 1.96 -0.174 0.233 0.00155-0.00474j 0.043-0.00947j -0.0129+0.00737j -0.0199+0.0049j -0.000423+0.003j -0.00204+0.00193j
π0p 0.9 1.96 -0.342 0.233 0.000817-0.00206j 0.0431-0.00656j -0.0104+0.00567j -0.0079+0.00666j 0.000874+0.00249j -0.00211+0.0011j
π0p 0.9 1.96 -0.5 0.233 -3.58e-05+0.000616j 0.0393-0.00237j -0.00742+0.00248j 0.00353+0.00798j 0.00211+0.00179j -0.000996-2.87e-05j
π0p 0.9 1.96 -0.643 0.233 -0.000373+0.00249j 0.0331+0.00216j -0.00532-0.00131j 0.0133+0.00816j 0.00301+0.00106j 0.00129-0.00135j
π0p 0.9 1.96 -0.766 0.233 -6.45e-05+0.00313j 0.026+0.00581j -0.00507-0.00455j 0.0201+0.00693j 0.00342+0.00043j 0.00446-0.00271j
π0p 0.9 1.96 -0.866 0.233 0.000451+0.00264j 0.0192+0.00758j -0.00633-0.00623j 0.0226+0.0046j 0.00329+7.16e-06j 0.00803-0.00396j
π0p 0.9 1.96 -0.94 0.233 0.000588+0.0015j 0.0129+0.00694j -0.00718-0.00583j 0.0207+0.00192j 0.0026-0.000179j 0.0113-0.00497j
π0p 0.9 1.96 -0.985 0.233 0.000251+0.00043j 0.00659+0.00412j -0.00514-0.0035j 0.0167-0.000179j 0.00144-0.00015j 0.0137-0.00562j
π0p 0.9 1.96 -1 0.233 0j 0j 0j 0.0146-0.000974j 0j 0.0146-0.00585j
π0p 0.9 1.98 1 0.228 0j -0.0574-0.0154j 0j 0j 0.012-0.0037j 0j
π0p 0.9 1.98 0.985 0.228 0.00188+0.0032j -0.0547-0.0147j -0.000666-0.000344j -0.00947+0.00499j 0.0115-0.0035j 0.00216-6.45e-05j
π0p 0.9 1.98 0.94 0.228 0.00127+0.00539j -0.0474-0.0131j -0.00216-0.00118j -0.0212+0.00887j 0.0103-0.00293j 0.00394-2.15e-05j
π0p 0.9 1.98 0.866 0.228 -0.00166+0.00591j -0.037-0.011j -0.00368-0.00203j -0.0344+0.0109j 0.00812-0.00203j 0.00509+0.000193j
π0p 0.9 1.98 0.766 0.228 -0.00471+0.00463j -0.0246-0.00912j -0.00502-0.00232j -0.046+0.0108j 0.00543-0.000924j 0.00548+0.000602j
π0p 0.9 1.98 0.643 0.228 -0.00594+0.00196j -0.0107-0.00811j -0.00656-0.00165j -0.0532+0.00913j 0.00267+0.000272j 0.00508+0.00115j
π0p 0.9 1.98 0.5 0.228 -0.00494-0.00124j 0.00394-0.00812j -0.00866+6.45e-05j -0.0547+0.00665j 0.000351+0.0014j 0.00397+0.00173j
π0p 0.9 1.98 0.342 0.228 -0.00259-0.004j 0.0183-0.00886j -0.0112+0.00244j -0.051+0.00439j -0.00115+0.00233j 0.00234+0.00221j
π0p 0.9 1.98 0.174 0.228 -0.000258-0.00555j 0.0309-0.00967j -0.0133+0.00479j -0.0433+0.00312j -0.00169+0.00293j 0.000494+0.00244j
π0p 0.9 1.98 0.0 0.228 0.00101-0.00552j 0.0402-0.00975j -0.0142+0.00632j -0.0331+0.00317j -0.00133+0.00315j -0.00115+0.00234j
π0p 0.9 1.98 -0.174 0.228 0.000946-0.00411j 0.045-0.0085j -0.0133+0.00643j -0.0216+0.00433j -0.000337+0.00297j -0.00216+0.00185j
π0p 0.9 1.98 -0.342 0.228 0-0.00188j 0.0451-0.00577j -0.0108+0.00494j -0.00977+0.00594j 0.00096+0.00246j -0.00219+0.000996j
π0p 0.9 1.98 -0.5 0.228 -0.000974+0.000358j 0.0411-0.00195j -0.0077+0.00219j 0.00169+0.00722j 0.00221+0.00177j -0.00105-0.00015j
π0p 0.9 1.98 -0.643 0.228 -0.0013+0.00195j 0.0344+0.00211j -0.00536-0.00105j 0.0117+0.00752j 0.00315+0.00102j 0.00125-0.00145j
π0p 0.9 1.98 -0.766 0.228 -0.000845+0.00252j 0.0269+0.00537j -0.00489-0.00381j 0.019+0.00661j 0.0036+0.000373j 0.00444-0.00277j
π0p 0.9 1.98 -0.866 0.228 -7.16e-05+0.00214j 0.0196+0.0069j -0.00606-0.00524j 0.0221+0.00473j 0.00347-5.73e-05j 0.008-0.00397j
π0p 0.9 1.98 -0.94 0.228 0.00033+0.00123j 0.0131+0.00629j -0.00694-0.00492j 0.0207+0.00253j 0.00276-0.000236j 0.0113-0.00492j
π0p 0.9 1.98 -0.985 0.228 0.000186+0.000351j 0.00666+0.00372j -0.00502-0.00294j 0.0171+0.000781j 0.00154-0.000186j 0.0137-0.00552j
π0p 0.9 1.98 -1 0.228 0j 0j 0j 0.0151+0.000115j 0j 0.0146-0.00573j
π0p 0.9 2 1 0.224 0j -0.0562-0.0136j 0j 0j 0.0119-0.00339j 0j
π0p 0.9 2 0.985 0.224 0.00212+0.00265j -0.0535-0.0131j -0.000666-0.000258j -0.00943+0.00428j 0.0115-0.0032j 0.00219-0.000107j
π0p 0.9 2 0.94 0.224 0.00153+0.00448j -0.0463-0.0117j -0.00216-0.000888j -0.0213+0.00761j 0.0103-0.00268j 0.00398-0.0001j
π0p 0.9 2 0.866 0.224 -0.00155+0.00492j -0.0361-0.00996j -0.00362-0.00151j -0.0348+0.00931j 0.0082-0.00186j 0.00512+0.0001j
π0p 0.9 2 0.766 0.224 -0.0048+0.00386j -0.0239-0.00842j -0.00487-0.00166j -0.0467+0.00924j 0.00557-0.000824j 0.00547+0.000509j
π0p 0.9 2 0.643 0.224 -0.0062+0.00165j -0.0101-0.00756j -0.00637-0.00102j -0.054+0.00773j 0.00284+0.000308j 0.00503+0.00106j
π0p 0.9 2 0.5 0.224 -0.00529-0.00102j 0.00457-0.00752j -0.0085+0.00043j -0.0557+0.00555j 0.000516+0.00139j 0.00387+0.00166j
π0p 0.9 2 0.342 0.224 -0.00301-0.00334j 0.0191-0.00805j -0.0111+0.00241j -0.052+0.00353j -0.00101+0.00229j 0.0022+0.00214j
π0p 0.9 2 0.174 0.224 -0.000745-0.00466j 0.032-0.00859j -0.0134+0.00432j -0.0444+0.00239j -0.00158+0.00289j 0.000358+0.00237j
π0p 0.9 2 0.0 0.224 0.00043-0.0047j 0.0416-0.00847j -0.0144+0.00554j -0.0343+0.00239j -0.00127+0.00312j -0.00128+0.00225j
π0p 0.9 2 -0.174 0.224 0.000258-0.00358j 0.0466-0.00719j -0.0136+0.00556j -0.023+0.00337j -0.000287+0.00295j -0.00226+0.00174j
π0p 0.9 2 -0.342 0.224 -0.000774-0.00177j 0.0467-0.00466j -0.0111+0.00426j -0.0111+0.00479j 0.00102+0.00246j -0.00226+0.000867j
π0p 0.9 2 -0.5 0.224 -0.00178+7.88e-05j 0.0425-0.00123j -0.00787+0.00191j 0.000444+0.00598j 0.0023+0.00176j -0.00107-0.000287j
π0p 0.9 2 -0.643 0.224 -0.00203+0.00141j 0.0356+0.00234j -0.00542-0.000824j 0.0108+0.00637j 0.00327+0.000996j 0.00125-0.00158j
π0p 0.9 2 -0.766 0.224 -0.00142+0.00192j 0.0277+0.00514j -0.00484-0.00314j 0.0185+0.00575j 0.00376+0.000344j 0.00445-0.00287j
π0p 0.9 2 -0.866 0.224 -0.000444+0.00166j 0.0202+0.00641j -0.00598-0.00435j 0.0221+0.00431j 0.00365-9.31e-05j 0.00802-0.00403j
π0p 0.9 2 -0.94 0.224 0.000158+0.00096j 0.0134+0.00575j -0.0069-0.00408j 0.0211+0.00257j 0.00292-0.000265j 0.0113-0.00494j
π0p 0.9 2 -0.985 0.224 0.000136+0.000279j 0.00681+0.00338j -0.00502-0.00244j 0.0177+0.00117j 0.00163-0.000201j 0.0137-0.00552j
π0p 0.9 2 -1 0.224 0j 0j 0j 0.0158+0.000638j 0j 0.0146-0.00572j